
1

SRI AKILANDESWARI WOMEN’S COLLEGE, WANDIWASH

DESIGN AND ANALYSIS OF ALGORITHM 

Class : III UG Computer Science

Mrs. R.PADMASHREE

Assistant Professor Department of Computer Science

SWAMY ABEDHANADHA EDUCATIONAL TRUST,

WANDIWASH



2

WHAT IS AN ALGORITHM?

• An algorithm is “a finite set of precise instructions 
for performing a computation or for solving a 
problem”

• A program is one type of algorithm

• All programs are algorithms

• Not all algorithms are programs!

• Directions to somebody’s house is an algorithm

• A recipe for cooking a cake is an algorithm

• The steps to compute the cosine of 90° is an 
algorithm
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Some algorithms are harder than others

• Some algorithms are easy
• Finding the largest (or smallest) value in a list

• Finding a specific value in a list

• Some algorithms are a bit harder
• Sorting a list

• Some algorithms are very hard
• Finding the shortest path between Miami and Seattle

• Some algorithms are essentially impossible
• Factoring large composite numbers
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ALGORITHM 1: MAXIMUM ELEMENT

• Given a list, how do we find the maximum element in 

the list?

• To express the algorithm, we’ll use pseudocode

• Pseudocode is kinda like a programming language, 

but not really
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ALGORITHM 1: MAXIMUM ELEMENT

• Algorithm for finding the maximum element in a list:

procedure max (a1, a2, …, an: integers)

max := a1

for i := 2 to n

 if max < ai then max := ai

{max is the largest element}
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ALGORITHM 1: MAXIMUM ELEMENT

procedure max (a1, a2, …, an: integers)

max := a1

for i := 2 to n

 if max < ai then max := ai
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PROPERTIES OF ALGORITHMS

• Algorithms generally share a set of properties:

• Input: what the algorithm takes in as input

• Output: what the algorithm produces as output

• Definiteness: the steps are defined precisely

• Correctness: should produce the correct output

• Finiteness: the steps required should be finite

• Effectiveness: each step must be able to be 

performed in a finite amount of time

• Generality: the algorithm should be applicable to all 

problems of a similar form
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ALGORITHM 2: LINEAR SEARCH

• Given a list, find a specific element in the list

• List does NOT have to be sorted!

procedure linear_search (x: integer; a1, a2, …, an: 
integers)

i := 1

while ( i ≤ n and x ≠ ai )

 i := i + 1

if i ≤ n then location := i

else location := 0

{location is the subscript of the term that equals x, or 
it is 0 if x is not found}
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ALGORITHM 2: LINEAR SEARCH, TAKE 2
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procedure linear_search (x: integer; a1, a2, …, an: integers)

i := 1

while ( i ≤ n and x ≠ ai )

 i := i + 1

if i ≤ n then location := i

else location := 0

i := 1

while ( i ≤ n and x ≠ ai )

 i := i + 1

if i ≤ n then location := i

else location := 0

4 1 7 0 5 2 9 3 6 8

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

i 23456789101

x 11

location 0
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ALGORITHM 3: BINARY SEARCH

procedure binary_search (x: integer; a1, a2, …, an: increasing 
integers)

i := 1 { i is left endpoint of search interval }

j := n { j is right endpoint of search interval }

while i < j

begin

 m :=  (i+j)/2  { m is the point in the middle }

 if x > am then i := m+1

 else j := m

end

if x = ai then location := i

else location := 0

{location is the subscript of the term that equals x, or it is 0 if x 
is not found}
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Algorithm 3: Binary search, take 1
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i := 1

j := n

procedure binary_search (x: integer; a1, a2, …, an: increasing integers)

while i < j

begin

 m :=  (i+j)/2

 if x > am then i := m+1

 else j := m

end

if x = ai then location := i

else location := 0

i := 1

j := n

while i < j

begin

 m :=  (i+j)/2

 if x > am then i := m+1

 else j := m

end

if x = ai then location := i
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ALGORITHM 3: BINARY SEARCH, TAKE 2
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i := 1

j := n

procedure binary_search (x: integer; a1, a2, …, an: increasing integers)

while i < j

begin

 m :=  (i+j)/2

 if x > am then i := m+1

 else j := m

end

if x = ai then location := i

else location := 0

i := 1

j := n

while i < j

begin

 m :=  (i+j)/2

 if x > am then i := m+1

 else j := m

end

if x = ai then location := I

else location := 0

1

x 15

1056 8 87

location 0

8



BINARY SEARCH RUNNING TIME

• How long does this take (worst case)?

• If the list has 8 elements

• It takes 3 steps

• If the list has 16 elements

• It takes 4 steps

• If the list has 64 elements

• It takes 6 steps

• If the list has n elements

• It takes log2 n steps
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SORTING ALGORITHMS

• Given a list, put it into some order

• Numerical, lexicographic, etc.

• We will see two types

• Bubble sort

• Insertion sort
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ALGORITHM 4: BUBBLE SORT

• One of the most simple sorting algorithms

• Also one of the least efficient

• It takes successive elements and “bubbles” them up the 
list

procedure bubble_sort (a1, a2, …, an)

for i := 1 to n-1

 for j := 1 to n-i

  if aj > aj+1

   then interchange aj and aj+1

{ a1, …, an are in increasing order }
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BUBBLE SORT RUNNING TIME

for i := 1 to n-1

 for j := 1 to n-i

  if aj > aj+1

   then interchange aj and aj+1

• Outer for loop does n-1 iterations

• Inner for loop does 

• n-1 iterations the first time

• n-2 iterations the second time

• …

• 1 iteration the last time

• Total: (n-1) + (n-2) + (n-3) + … + 2 + 1 = (n2-n)/2

• We can say that’s “about” n2 time
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INSERTION SORT RUNNING TIME

for j := 2 to n begin
  i := 1
  while aj > ai
   i := i +1
  m := aj
  for k := 0 to j-i-1
   aj-k := aj-k-1
  ai := m
 end { a1, a2, …, an are sorted }
• Outer for loop runs n-1 times
• In the inner for loop:

• Worst case is when the while keeps i at 1, and the for 
loop runs lots of times

• Total is 1 + 2 + … + n-2 = (n-1)(n-2)/2
• We can say that’s “about” n2 time
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COMPARISON OF RUNNING TIMES

• Searches

• Linear: n steps

• Binary: log2 n steps

• Binary search is about as fast as you can get

• Sorts

• Bubble: n2 steps

• Insertion: n2 steps

• There are other, more efficient, sorting techniques

• In principle, the fastest are heap sort, quick sort, 
and merge sort

• These each take take n * log2 n steps
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