

SRI AKILANDESWARI WOMEN'S COLLEGE, WANDIWASH

DESIGN AND ANALYSIS OF ALGORITHM Class : III UG Computer Science

Mrs. R.PADMASHREE

Assistant Professor Department of Computer Science

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH

WHAT IS AN ALGORITHM?

- An algorithm is "a finite set of precise instructions for performing a computation or for solving a problem"
 - A program is one type of algorithm
 - All programs are algorithms
 - Not all algorithms are programs!
 - Directions to somebody's house is an algorithm
 - A recipe for cooking a cake is an algorithm
 - The steps to compute the cosine of 90° is an algorithm

Some algorithms are harder than others

- Some algorithms are easy
 - Finding the largest (or smallest) value in a list
 - Finding a specific value in a list
- Some algorithms are a bit harder
 - Sorting a list
- Some algorithms are very hard
 - Finding the shortest path between Miami and Seattle
- Some algorithms are essentially impossible
 - Factoring large composite numbers

ALGORITHM 1: MAXIMUM ELEMENT

- Given a list, how do we find the maximum element in the list?
- To express the algorithm, we'll use pseudocode
 Pseudocode is kinda like a programming language, but not really

ALGORITHM 1: MAXIMUM ELEMENT

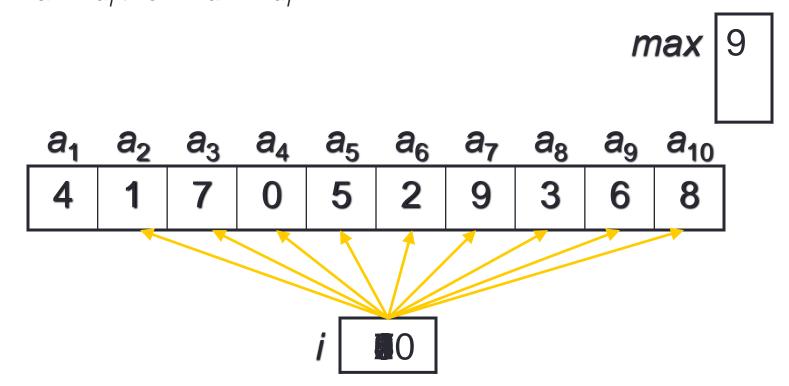
• Algorithm for finding the maximum element in a list:

procedure max $(a_1, a_2, ..., a_n: integers)$ $max := a_1$ **for** i := 2 **to** n **if** max < a_i **then** $max := a_i$

{*max* is the largest element}

ALGORITHM 1: MAXIMUM ELEMENT

procedure max $(a_1, a_2, ..., a_n$: integers) max := a_1 for i := 2 to n if max < a_i then max := a_i



PROPERTIES OF ALGORITHMS

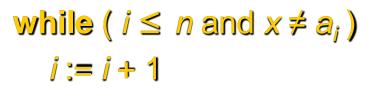
- Algorithms generally share a set of properties:
 - Input: what the algorithm takes in as input
 - Output: what the algorithm produces as output
 - Definiteness: the steps are defined precisely
 - Correctness: should produce the correct output
 - Finiteness: the steps required should be finite
 - Effectiveness: each step must be able to be performed in a finite amount of time
 - Generality: the algorithm *should* be applicable to all problems of a similar form

ALGORITHM 2: LINEAR SEARCH

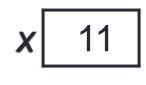
- Given a list, find a specific element in the list
 - List does NOT have to be sorted!
 procedure linear_search (x: integer; a₁, a₂, ..., a_n: integers)
 - *i* := 1
 - while $(i \le n \text{ and } x \ne a_i)$
 - i := i + 1
 - if $i \le n$ then *location* := i
 - else *location* := 0
 - {*location* is the subscript of the term that equals x, or it is 0 if x is not found}

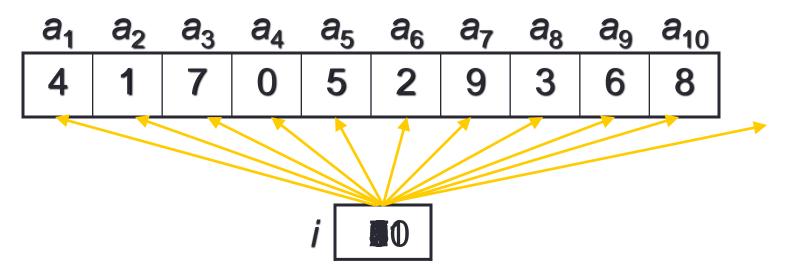
ALGORITHM 2: LINEAR SEARCH, TAKE 2

procedure linear_search (*x*: integer; $a_1, a_2, ..., a_n$: integers) *i* := 1



if $i \leq n$ then location := i else location := 0





ALGORITHM 3: BINARY SEARCH

procedure binary_search (x: integer; $a_1, a_2, ..., a_n$: increasing integers)

- *i* := 1 { *i* is left endpoint of search interval }
- j := n { *j* is right endpoint of search interval }
- **while** *i* < *j*

begin

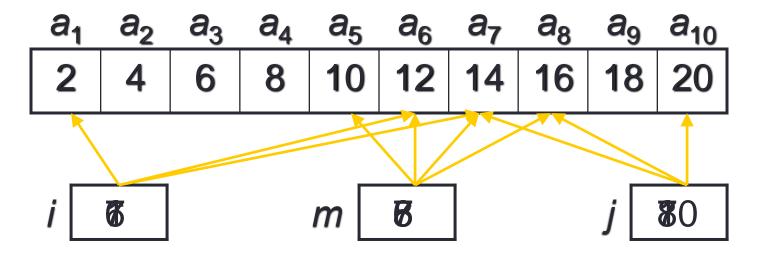
 $m := \lfloor (i+j)/2 \rfloor$ { *m* is the point in the middle } if $x > a_m$ then i := m+1else j := mend if $x = a_i$ then *location* := *i* else *location* := 0 [location is the subscript of the term that equals x, or it is 0]

{*location* is the subscript of the term that equals x, or it is 0 if x is not found}

Algorithm 3: Binary search, take 1

procedure binary_search (*x*: integer; $a_1, a_2, ..., a_n$: increasing integers)

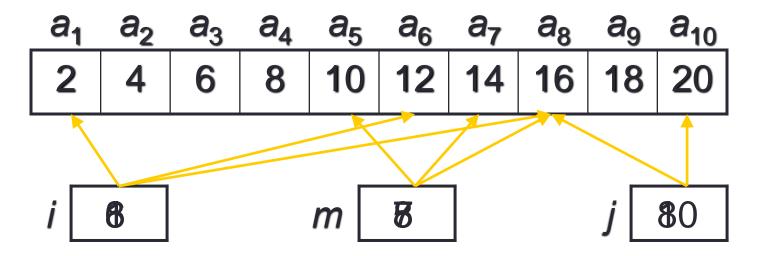
<i>i</i> := 1	while i < j	if x = a _i then location := i	
j := n	begin	else location := 0	
	m :=	x 14	
	end	location 7	



ALGORITHM 3: BINARY SEARCH, TAKE 2

procedure binary_search (x: integer; $a_1, a_2, ..., a_n$: increasing integers)

<i>i</i> := 1	while <i>i < j</i>	if <i>x</i> = <i>a_i</i> then <i>location</i> := <i>l</i>	
j := n	begin	else location := 0	
	m :=	x	15
	end	location	0



BINARY SEARCH RUNNING TIME

- How long does this take (worst case)?
- If the list has 8 elements
 - It takes 3 steps
- If the list has 16 elements
 - It takes 4 steps
- If the list has 64 elements
 - It takes 6 steps
- If the list has *n* elements
 - It takes $\log_2 n$ steps

SORTING ALGORITHMS

- Given a list, put it into some order
 - Numerical, lexicographic, etc.
- We will see two types
 - Bubble sort
 - Insertion sort

ALGORITHM 4: BUBBLE SORT

- One of the most simple sorting algorithms
 - Also one of the least efficient
- It takes successive elements and "bubbles" them up the list

```
procedure bubble_sort (a_1, a_2, ..., a_n)

for i := 1 to n-1

for j := 1 to n-i

if a_j > a_j+1

then interchange a_j and a_j+1

{ a_1, ..., a_n are in increasing order }
```

BUBBLE SORT RUNNING TIME

for i := 1 to n-1for j := 1 to n-iif $a_j > a_j+1$ then interchange a_j and a_j+1

- Outer for loop does n-1 iterations
- Inner for loop does
 - *n*-1 iterations the first time
 - *n*-2 iterations the second time

•

- 1 iteration the last time
- Total: $(n-1) + (n-2) + (n-3) + \dots + 2 + 1 = (n^2 n)/2$
 - We can say that's "about" n^2 time

INSERTION SORT RUNNING TIME

for
$$j := 2$$
 to n begin
 $i := 1$
while $a_j > a_i$
 $i := i + 1$
 $m := a_j$
for $k := 0$ to $j - i - 1$
 $a_{j-k} := a_{j-k-1}$
 $a_i := m$
end { $a_1, a_2, ..., a_n$ are sorted }
• Outer for loop runs $n - 1$ times
• In the inner for loop:
• Worst case is when the while keeps i at 1, and the for
loop runs lots of times
• Total is $1 + 2 + ... + n - 2 = (n - 1)(n - 2)/2$
• We can say that's "about" n^2 time

COMPARISON OF RUNNING TIMES

- Searches
 - Linear: *n* steps
 - Binary: $\log_2 n$ steps
 - Binary search is about as fast as you can get
- Sorts
 - Bubble: *n*² steps
 - Insertion: n^2 steps
 - There are other, more efficient, sorting techniques
 - In principle, the fastest are heap sort, quick sort, and merge sort
 - These each take take $n * \log_2 n$ steps

